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A dual-phase-lag diffusion model for interfacial

layer growth in metal matrix composites
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The time dependence of a reinforcement-matrix interfacial layer growth (RMILG) in most
metal matrix composites (MMC’s) is not t1/2 as described by Fick’s law. Moreover, the
RMILG vs. t1/2 could be linear for relatively short and long times, and an anomalous
transition behavior exhibits in between. In this paper, a dual-phase-lag diffusion (DPLD)
model is proposed to characterize the RMILG kinetics. Unlike Fick’s law, it accounts for the
two lagging times required for the processes of interdiffusion and chemical reaction. This
unique feature empowers the DPLD model to capture the multiple stages response over the
entire RMILG history. Model validation is verified with the experimental results of seven
different MMC systems. C© 1999 Kluwer Academic Publishers

1. Introduction
Reinforcement-matrix interfacial layer growth
(RMILG) has been observed in MMC’s during service
and, more commonly, during fabrication at elevated
temperatures. The presence of an interfacial phase
could affect the mechanical properties and physical
integrity of the composite systems. Therefore, an un-
derstanding of the nature, kinetics and rate-controlling
process for the RMILG is paramount. This will allow
to possibly optimize joining temperature and time to
form a joint, free from any deleterious second phases.
Also, an accurate characterization of the joint evolution
during fabrication and operation service will provide
useful information for investigating the degraded sy-
stem mechanical properties and physical integrity.

RMILG in MMC’s depends upon composite material
systems, joining process, operation temperatures, dif-
fusion and chemical reaction, time, etc. The growth ki-
netics is usually studied from thickness measurements
performed under the optical microscope on polished
sections cut perpendicularly to the reinforcement direc-
tion. It has been reported that RMILG does not often
follow Fickian diffusion law but is instead controlled
by tm (m 6= 1/2), for example, between SiC fibers and
Titanium alloys [1–3], tungsten fibers and superalloys
whose major contents include Fe, Ni and Co [4, 5], eta-
aluminum fibers and magnesium alloys [6], and SiC
particulates and Al-Ti alloys [7]. More specifically, the
RMILG is controlled by variablem values for which
the layer thickness (H ) vs.t1/2 is linear in some periods
while nonlinear in others [1].

Besides curve-fitting methods, several analytical
studies have examined the RMILG in MMC’s. How-
ever, the fundamental framework for most of the inves-
tigations is based on Fick’s law, i.e.,H ∼ t1/2. Obvi-

ously, these Fick’s law-based approaches are unable to
describe the entire history of the RMILG, especially for
the cases with multiple stages response.

The dual-phase-lag diffusion (DPLD) model has
been proposed by the authors for investigating the rapid
thermal oxidation in thin films [8] and intermetallic
growth in solder joints [9]. Because this model consid-
ers the delayed response between the mass flux vector
and density gradient, it is able to capture the anomalous
transition behavior between the linear (H ∼ t1/2) and
nonlinear response regimes. In [8] and [9], the DPLD
model was established based on the planar condition.
To characterize the RMILG in MMC’s, a general, one-
dimensional DPLD model is proposed in this paper. On
account of the geometry of long fibers or particulates
in an MMC, the model is based on the cylindrical and
spherical coordinate systems. The derivation will be de-
tailed in the following. Also, the model credibility will
be verified with the experiment data of seven different
MMC systems [1, 3, 5].

2. Phase-lag concept
The dual-phase-lagging to both the relative mass flux
vector (j̄ ) and density gradient (∇ρ) in an interfa-
cial compound between two dissimilar materials is ex-
pressed as

j̄ (r̄ , t + τ j ) = −D∇ρ(r̄ , t + τρ) (1)

wherer̄ represents the position vector,t denotes time,
τ j andτρ are the delayed times associated withj̄ and
∇ρ, respectively, andD is the diffusion coefficient.
Equation 1 shows the temperature gradient established
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across a material volume located at a position vectorr̄ at
timet + τρ results in a mass flux to diffuse at a different
instant of timet + τ j . The values of the two phase lags,
τρ and τ j , depend upon composite material systems
as well as environmental temperature. They are treated
as two intrinsic properties characterizing the transient
process of mass transport. To combine with the mass
continuity equation, where all the physical quantities
occur at the same instant of time, Equation 1 is rewritten
in the first-order Taylor series expansion

j̄ (r̄ , t)+ τ j
∂ j̄

∂t
(r̄ , t)∼=−D∇ρ(r̄ , t)− Dτρ

∂

∂t
∇ρ(r̄ , t),

τ j ; τρ ¿ t (2)

The mass continuity equation for the interfacial com-
pound is given by

−∇ · j̄ (r̄ , t) = ∂ρ

∂t
(r̄ , t) (3)

The lagging response can be better understood by elim-
inating the mass flux vector from Equations 2 and 3.
Taking the divergence of Equation 2 and then substitut-
ing Equation 3 into the result yields

∇2ρ + τρ ∂
∂t
∇2ρ = 1

D

∂ρ

∂t
+
(
τ j

D

)
∂2ρ

∂t2
(4)

Equation 4 clearly indicates that the diffusion coeffi-
cient,D, and the two phase lags,τ j andτρ , all play an
important role in the mass transport. Note that a con-
stantD is assumed in the above derivation.

Depending upon the values ofτ j andτρ , three spe-
cial cases are drawn from Equation 4. For the case of
τ j = τρ , not necessarily equal to zero, Equation 4 sim-
plifies to Fick’s diffusion law. It is thus evident that an
instantaneous response between the mass flux vector
and density gradient is the intrinsic assumption behind
Fick’s law. With the conditions ofτρ = 0 but τ j 6= 0,
the second term on the left hand side of Equation 4
vanishes. This results in a wave equation with a mass
transport speed of (D/τ j )1/2 and a diffusion damping
effect. The infinite growth rate att = 0 in this case im-
plies that an interfacial layer of finite thickness will
instantaneously be formed at the very beginning of a
joint process. Another special case isτ j = 0 butτρ 6= 0.
For this case no interfacial compound is grown. The
discussion of these three special cases can be found in
Chenet al. [9].

3. One-dimensional DPLD model
An interfacial layer in MMC’s results from a compli-
cated process of interdiffussion and chemical reaction
of the constituents in the two composite components.
An interfacial compound could also consist of several
sub-layers; each layer has different material phases.
Because of the complex physics behind the interfacial
phase formation, it is difficult to develop a model which
is able to precisely describe the entire history and every

detail process of the RMILG. To keep the analytical
model as simple as possible, we propose an alternative,
bulk diffusion model in which the interdiffusion pro-
cess is equivalently considered as a one-way diffusion.
With this assumption, diffusion will only occur from
one material (which consists of diffusion controlling
constituents) into the other (which is relatively inac-
tive to diffuse). The total quantity of the constituents
diffused, however, is the same as that resulting from
the interdiffusion process. Despite the fact that the sim-
plified approach could not virtually reflect the actual
interfacial phase formation (for example, the reaction
zone grows into both fibers and matrix), it will not lose
its capability of predicting the overall interfacial layer
thickness.

Assume that the cross-section of the reinforcement
in an MMC is cylindrical for fibers and spherical for
particulates. Due to the symmetry, it is reasonable to
consider that the RMILG is a one-dimensional process
and only takes place along the radial direction. Next,
let ρo be the density of the diffused constituents in the
diffusion-active material andρs, the saturated density
of the diffused constituents at the boundary between
the interfacial layer and the diffusion-inactive material.
Also let r be the radial coordinate originated from the
center of the reinforcement anda, the initial radius of
the reinforcement (Fig. 1). Thus the governing equa-
tion for this one-dimensional RMILG becomes, from
Equation 4,

1

r λ
∂

∂r

(
r λ
∂ρ

∂r

)
+ τρ ∂

∂t

[
1

r λ
∂

∂r

(
r λ
∂ρ

∂r

)]

= 1

D

∂ρ

∂t
+
(
τ j

D

)
∂2ρ

∂t2
(5)

which is subject to the following boundary and initial
conditions:

ρ = ρs atr = L(t) ≡ a+ H (t); ρ → 0 asr →∞
(6)

and

ρ = 0,
∂ρ

∂t
= 0, L = a att = 0 (7)

In Equation 5,λ equals 1 or 2, depending on the geom-
etry (cylindrical or spherical, respectively). Note that

Figure 1 One-dimensional model for interfacial layer growth.
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Equation 5 also represents the planar case, i.e., unidi-
rectional diffusion, whenλ= 0. In this case,a is the
initial thickness of the diffusion-active material.

Once the density distribution of the diffused con-
stituents in an interfacial compound is determined, the
interlayer thickness can be estimated by using the sur-
face recession rate [10]

d(ρoL)

dt
= −D

∂ρ

∂r
atr = L(t) (8)

For convenience, let us define the dimensionless pa-
rameters as follows:

R≡ ρ

ρs
, β ≡ t

τ j
, T ≡ τρ

τ j
, ξ ≡ r√

Dτ j
,

γ ≡ ρs

ρo
, and l ≡ L√

Dτ j
, (9)

The two governing Equations, 5 and 8, then, can be
rewritten in the non-dimensional form

1

ξλ

∂

∂ξ

(
ξλ
∂ρ

∂ξ

)
+T

∂

∂β

[
1

ξλ

∂

∂ξ

(
ξλ
∂R

∂ξ

)]
= ∂R

∂β
+∂

2R

∂β2

(10)
and

dl

dβ
= −∂R

∂ξ
atξ = γ l (β) (11)

Also the dimensionless boundary and initial conditions
become

R= 1 atξ = γ l (β); R→ 0 asξ →∞ (12)

and

R= 0,
∂R

∂β
= 0, and l = a

γ
√

Dτ j
atβ = 0 (13)

Laplace transform for Equations 10 and 11 can be ob-
tained in a straightforward manner:

ξ2 d2R̄

dξ2
+ λξ dR̄

dξ
− B2ξ2R̄= 0 (14)

and

pl̄ − a

γ
√

Dτ j
= −dR̄

dξ
(15)

in which p is the Laplace transform parameter, andB
is defined as

B =
√

p(1+ p)

1+ T p
(Â0) (16)

Equation 14 is a Bessel differential equation. The gen-
eral solution is given by

R̄= ξ 1−λ
2 [C1Iυ(

√−Bξ )+ C2Kυ(
√−Bξ )] (17)

where Iυ and Kυ are the first and second modified
Bessel functions of orderυ, respectively, andυ =
|(1− λ)/2|.

3.1. Fiber-reinforced MMC’s
For a fiber-reinforced MMC,λ= 1. Equation 17 thus
becomes

R̄= C1Io(Bξ )+ C2Ko(Bξ ) (18)

The sum ofH anda in the Laplace transform domain (l̄ )
can be obtained from the transformed growth kinetics
(Equation 15) and the boundary conditions (Equations
12 and 13)

p

(
pl̄ − a

γ
√

Dτ j

)
Ko(Bγ pl̄ ) = BK1(Bγ pl̄ ) (19)

Note that the above equation is transcendental; there-
fore, a closed form solution for̄l cannot be derived.

3.2. Particulate-reinforced MMC’s
The solution of Equation 17 can be simplified for a
particulate-reinforced MMC by settingλ= 2

R̄= 1

ξ

[
C1eBξ + C2e−Bξ ] (20)

Unlike fiber-reinforced MMC’s, the closed form solu-
tion for l̄ is obtained as

l̄ =

a√
Dτ j

p+ Bγ +
√√√√( a√

Dτ j
p+ Bγ

)2

+ 4γ p

2γ p2

(21)

3.3. Simplified solutions
ForH ¿ a, it is reasonable to approximate the RMILG
as an one-dimensional planar process. The solution of
Equation 17 for the this case (λ= 0) is simple,

R̄= C1eBξ + C2e−Bξ (22)

The interfacial layer thickness in the Laplace domain,
h̄, is then found to be

h̄ = 1

p2

√
p(1+ p)

1+ T p
(23)

The widely used Fickian diffusion equation for the pla-
nar case can be reduced from Equation 23 by setting
T = 1. This leads to

h̄ = 1

p3/2
(24)

6185



The inverse of Equation 24 gives

h = 2√
π
·
√
β (25)

The well-knownt1/2 behavior in a Fickian diffusion
process is thus retrieved.

Each of the three Equations, 19, 21 and 23, con-
tains several branch points which prevent from obtain-
ing an analytical inversion for the RMILG. Therefore,
the well-proven Riemann-sum approximation for the
Laplace inversion is adopted [11]

l (β) ∼= e4.7

β

[
1

2
l̄

(
4.7

β

)
+ Re

N∑
n=1

l̄

(
4.7inπ

β

)
(−1)n

]
(26)

wherel̄ is given in Equations 19 and 21 for the cylin-
drical and spherical cases, respectively, and is replaced
with h̄ in Equation 23 for the planar case; “Re” rep-
resents the real part of the summation. The number of
terms N used in the Riemann-sum increases until a
specified Cauchy norm for convergence is satisfied. In
this work, the Cauchy norm is set to be smaller than
10−15. Computer calculation of Equation 26 is simple
and only requires a little effort.

4. Determination of the material parameters
By examining Equations 9, 19, 21 and 23, there
are five material properties,τ j , τρ, D, ρo andρs, and
one geometry parameter,a, involved in the DPLD
model. Nonetheless, five constants,τ j , T(= τρ/τ j ),
γ (= ρs/ρo),

√
Dτ j anda, are needed to solve Equa-

tions 19 and 21 for the cylindrical and spherical cases,
respectively. The required constants further reduce to
three, i.e.,τ j , T andγ

√
Dτ j for the planar case (see

Equation 23).
To determine these parameters, a tedious trail and er-

ror approach must be performed for the cylindrical and
spherical cases. On the other hand, the three material
parameters for the planar case can easily be calibrated
and will be discussed in the following.

The asymptotic behaviors of Equation 23 can be an-
alytically derived in terms of the physical quantities [9]

H → γ
√

D

0(3/2)T

√
t ast → 0 (27)

and

H → 2γ
√

D√
π

√
t ast →∞ (28)

The above two equations show the RMILG is a function
of t1/2 at both extremely short and long times. However,
the growth rates are different. Although the ratioT has
nothing to do with the RMILG at relatively long time,
it does significantly influence the growth rate for short
time. It is seen from Equation 27 that the smaller the
ratio, the greater the growth rate.

With the slope of the experimentally obtainedH vs.
t1/2 curve at extremely long times, the value ofγ

√
D

can be calculated by using Equation 28. Substituting
this value into Equation 27, the ratioT is then esti-
mated from the experimental data at the extremely short
times. Another constant,τ j , can simply be acquired by
choosing a value with which the DPLD model fits the
experimental data best. Thus, the values ofτ j , T and
γ
√

Dτ j are all determined.

5. Results and discussion
Credibility of the proposed DPLD model for the
RMILG in MMC’s is validated with seven fiber com-
posite systems. Because the radii of the fibers are much
larger than the interfacial layer thickness, Equation 23
was employed in these calculations. Table I lists the
values of the three material parameters. The predicted
RMILG results are plotted as a function oft1/2 in Figs
2–4.

Fig. 2 compares the data of Blueet al. [3] for the
RMILG in SCS-6/β21S composites. Beta 21S is a
titanium alloy having the composition Ti-15Mo-2.7Nb-
3Al-0.25Si wt %. The SCS-6 fibers have an initial diam-
eter of about 147µm, with a 3-µm carbon-rich coat-
ing. The interfacial layer growth measurements were
taken on 16-ply composite samples in the as-received,
1100◦C thermal cycled for 30-, 120-, and 300-s con-
ditions [3]. The dashed line is predicted by Blueet al.

TABLE I Material parameters of MMC’s

MMC τ j (h) Z γ
√

Dτ j (µm−1)

SCS-6//β21S 10.0 2.0 0.34.
SiC/Ti-6Al 200.0 0.50 13.04
SiC/Ti 250.0 0.17 16.58
SS316 65.0 0.05 10.66
Incoloy 907 75.0 0.025 8.70
FeCrAlY 500.0 5.0 51.57
Waspaloy 15.0 7.0 1.81

Figure 2 Interfacial layer growth in SCS-6/β21S MMC. (x) Experiment
[3], (- -) Prediction [3], (—) DPLD model.

6186



Figure 3 Interfacial layer growth in SiC/Ti-6Al-4V and SiC/Ti MMC’s.
( x) Experiment [1], (—) DPLD model.

Figure 4 Intermetallic growth in W-fiber/superalloy MMC’s. (x) Ex-
periment [5], (- -) Prediction [5], (—) DPLD model.

using Fick’s law. It is evident that Fick’s law does not
accurately simulate the RMILG. On the other hand,
the DPLD model correlates well with the experimental
result.

A comparison between the DPLD model and the ex-
perimental data of Martineauet al. [1] for the RMILG
in both SiC/Ti-6Al-4V and SiC/Ti composites is shown
in Fig. 3. The annealing temperatures are at 950◦C.
Multiple-stage responses of the RMILG which cannot
be fitted to a single straight line (Fick’s law) within the
whole t1/2-axis for the two MMC’s were reported in
[1]. It is interesting to note the growth behaviors in rel-
atively long and short times. The DPLD model predicts
a linear response after time prolongs to about 200 h
for SiC/Ti-6Al-4V and about 225 h for SiC/Ti. The lin-
ear growth behavior is also clearly seen at relatively
short time in the case of SiC/Ti-6Al-4V. Again, there
is a good agreement between the DPLD model and the
measurements for the two cases.

Other examples of non-Fickian intermetallic growth
are presented in Fig. 4. The composite specimens were
annealed in vacuum at 1093◦C [5]. Each MMC con-
sisted of the tungsten (W) fibers and a superalloy ma-
trix. The W-fibers, doped with 1.5 wt % ThO2 inert
dispersoids, measured approximately 101µm in initial
diameter. Four superalloy matrices used were stainless
steel 316, Incoloy 907, Fe-Cr-Al-Y and Waspaloy. The
contents of these superalloys are given in [5].

The dashed lines, ranging over the experimental data,
are the linear (Fick’s law) predictions [5]. As shown
in the figure, both the linear solutions and the DPLD
model match well with the experimental data. Since
only three data points were given here for each case, we
are reluctant to conclude the DPLD model has precisely
characterized the entire RMILG history. However, it is
certain that the linear solutions are unable to predict
the RMILG for short time. This can be seen by extrap-
olating the results tot = 0. Also note that the difference
between the linear solutions and DPLD predictions will
become larger and larger as time lengthens.

6. Conclusions
A one-dimensional DPLD model, which accounts for
the different times required for the processes of inter-
diffusion and chemical reaction, is developed for sim-
ulating the growth of interfacial phase in MMC’s. This
model predicts the linear growth kinetics (H vs. t1/2)
but with different growth rates for relatively short and
long times and captures the anomalous transition be-
havior in between. When the times for the interdif-
fusion and chemical reaction are identical, the model
simplifies to Fick’s law. In the model validation with
seven different MMC systems, it is demonstrated that
the DPLD model can be a robust and viable tool in the
analysis of interfacial phase growth.
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